Approximation of the invariant measure with an Euler scheme for Stochastic PDE's driven by Space-Time White Noise
نویسندگان
چکیده
In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing with exponential convergence to equilibrium. Considering test functions of class C, bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step.
منابع مشابه
Analysis of a HMM time-discretization scheme for a system of Stochastic PDE's
We consider the discretization in time of a system of parabolic stochastic partial differential equations with slow and fast components; the fast equation is driven by an additive space-time white noise. The numerical method is inspired by the Averaging Principle satisfied by this system, and fits to the framework of Heterogeneous Multiscale Methods. The slow and the fast components are approxi...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملHigh Order Integrator for Sampling the Invariant Distribution of a Class of Parabolic Stochastic PDEs with Additive Space-Time Noise
We introduce a time-integrator to sample with high order of accuracy the invariant distribution for a class of semilinear SPDEs driven by an additive space-time noise. Combined with a postprocessor, the new method is a modification with negligible overhead of the standard linearized implicit Euler-Maruyama method. We first provide an analysis of the integrator when applied for SDEs (finite dime...
متن کاملWeak approximation of stochastic partial differential equations: the nonlinear case
We study the error of the Euler scheme applied to a stochastic partial differential equation. We prove that as it is often the case, the weak order of convergence is twice the strong order. A key ingredient in our proof is Malliavin calculus which enables us to get rid of the irregular terms of the error. We apply our method to the case a semilinear stochastic heat equation driven by a space-ti...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012